Intermediate level
Qualitative Comparative Analysis (QCA)
Introduction

In this intermediate level course, participants will learn to identify the limitations in the Standard Analysis by identifying untenable assumptions on logical remainders and analytical pitfalls that stem from skewed sets. The most innovative strategies to deal with these pitfalls will be introduced and an Enhanced Standard Analysis will be performed to put in practice these strategies. Empirical data will be provided in order to perform the exercises with R environment. Participants will also learn how to evaluate theories rather than testing hypothesis by applying the theory-evaluation approach. The course follows with the last updates on the QCA variant two-step QCA with ESA as a way to deal with the limited diversity. It also follows with and application of this approach to empirical data with R environment. Finally, the course will address solutions to the ‘black-box problem’ in QCA by introducing post-QCA case selection principles to examples of published QCA studies.
Tasks for ECTS Credits

3 credits (pass/fail grade): Attendance at least at the 90% of the course hours, participation in-class activities, doing necessary reading and/or other work prior to, and after, class. A take-home paper would need to be prepared (2500–4000 words, excluding title page, references and appendices), which will consist of a replication of a published QCA study (with R software environment) or a QCA analysis based on own data.

More information about assignments will be provided in class.

Long Course Outline

This intermediate level course provides various refinements to QCA analyses, through more fine-grained procedures in the R environment especially.

By the end of the course, you will:

• Understand the potential pitfalls in the Standard Analysis procedure and be able to implement the strategies for improvement.
• Calculation and interpretation of the parameters of fit (consistency and coverage)
• Be able to apply the basic strategies of treatment of logical remainders as done by the Standard Analysis in an Enhanced Standard Analysis procedure.
• Be able to identify and deal with skewed sets
• Be able to apply the Enhanced Standard Analysis from A to Z in QCA with the R environment
• Understand the logic of a set-theoretic multi-method research
• Be able to perform a set-theoretic theory evaluation
• Understand the logic of a two-step QCA
• Conducting and visualizing QCA
• Be able to format a QCA paper for submitting to a journal.
Prerequisite Knowledge

Some prior knowledge is required; in particular: (1) knowledge of the epistemological foundations of QCA; (2) having followed some introductory-level QCA training, or having acquired equivalent skills through self-learning; (3) some hands-on experience in applying QCA, including software use (at least basic protocols). In addition, some knowledge of the basic functions of R and RStudio will be useful to start working with the software from session 1. If in doubt, contact the instructors before registering.

Timetable Intermediate level QCA course

<table>
<thead>
<tr>
<th>22 May 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00 Welcome</td>
</tr>
<tr>
<td>9:30 Training session 1: Set-theoretic methods and QCA in a Nutshell (i): Pitfalls in the Standard Analysis and Skewed sets</td>
</tr>
<tr>
<td>10:45 Coffee break</td>
</tr>
<tr>
<td>11:15 Training session 2: Set-theoretic methods and QCA in a Nutshell (ii): Parameters of fit and the Enhanced Standard Analysis</td>
</tr>
<tr>
<td>12:30 Lunch</td>
</tr>
<tr>
<td>13:30 Training session 3: Hands-on session - QCA from A to Z: Parameters of Fit, ESA and skewed sets</td>
</tr>
<tr>
<td>14:45 Coffee break</td>
</tr>
<tr>
<td>15:15 Special session: “visualization options in QCA: overview and pro’s and con’s” by Claude Rubinson</td>
</tr>
<tr>
<td>16:30 End course day 1</td>
</tr>
<tr>
<td>19:00 [Dinner]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>23 May 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:30 Training session 4: Lecture & hands-on session: Set-theoretic theory evaluation</td>
</tr>
<tr>
<td>10:45 Coffee break</td>
</tr>
<tr>
<td>11:15 Training session 5: Lecture & hands-on session: Two-step QCA</td>
</tr>
<tr>
<td>12:30 Lunch</td>
</tr>
<tr>
<td>13:30 Training session 6: Set-theoretic multi-method research</td>
</tr>
<tr>
<td>14:45 Coffee break</td>
</tr>
<tr>
<td>15:15 Special session: “formatting of a QCA paper for submission to a journal (tips & good practices)” by dr. Valérie Pattyn & dr. Priscilla Álamos-Concha</td>
</tr>
<tr>
<td>16:30 End course day 2</td>
</tr>
</tbody>
</table>
Session details

Session 1 - lecture

Set-theoretic methods and QCA in a Nutshell: Pitfalls in the Standard Analysis and Skewed sets

We start by reflecting on what the Standard Analysis can offer and the limitations thereof, to go full on the different strategies for identifying untenable assumptions on logical remainders and analytical pitfalls that stem from skewed sets.

- The standard QCA protocol
- How to identify untenable assumptions on logical remainders
- How to identify analytic pitfalls that stem from skewed sets

Session 2 - lecture

Set-theoretic methods and QCA in a Nutshell (ii): Parameters of fit and the Enhanced Standard Analysis

You will learn about the different strategies about how to avoid untenable assumptions on logical remainders, how to avoid analytic pitfalls that stem from skewed sets and how the implementation of an Enhanced Standard Analysis helps to deal with the pitfalls of the Standard Analysis.

- How to avoid untenable assumptions on logical remainders
- How to avoid analytic pitfalls that stem from skewed sets
- How the implementation of Enhanced Standard Analysis helps to deal with the pitfalls of the Standard Analysis

Session 3 - Hands-on

QCA from A to Z: Parameters of Fit, ESA and skewed sets

Session 3 is a practical session where we will evaluate and avoid skewed sets, implement parameters of fit to our data and to perform a QCA analysis by implementing the Enhanced Standard Analysis. Empirical data will be provided in order to perform the exercises with R environment.

- Implementation of parameters of fit and ESA analysis in R to empirical data for replication
Session 4 - Lecture & hands-on

Set-theoretic theory evaluation

We will introduce theory-evaluation as a method to evaluate theories rather than testing hypothesis. You will learn how to implement this technique to empirical examples of published QCA studies.

- Evaluating theories with set-theoretic methods
- Implementation of Theory Evaluation techniques to empirical examples of published QCA studies

Session 5 - Lecture & hands-on

Two-step QCA

It introduces an updated version of the two-step QCA approach by conceptualizing conditions in remote (contexts) and proximate (causes) ones, as a way to deal with limited diversity and understand causation. It follows with and application of this approach to empirical data with R environment.

- An updated version of the two-step QCA approach (remote & proximate conditions), limited diversity
- Application of the updated two-step QCA approach to empirical data

Session 6 - lecture

Set-theoretic multi-method research

We will address solutions to the ‘black-box problem’ in QCA by introducing post-QCA case selection principles to examples of published QCA studies. You will then learn how to select different kind of cases for within-case analysis to be analyzed with different qualitative methods, such as process-tracing techniques.

- How to select cases after a QCA. Applying the post-QCA case selection principles to examples of published QCA studies
Instructor Details

PROFESSOR CARSTEN Q. SCHNEIDER

schneiderc@ceu.edu
http://people.ceu.edu/carsten-q_schneider
Institution: Central European University

Instructor Bio

Carsten Q. Schneider is Professor of Political Science at Central European University Budapest. His research focuses on regime transitions, autocratic regimes, the qualities of democracies, and the link between social and political inequalities. He also works in the field of comparative methodology, especially on set-theoretic methods, and is recognized as an international expert in the further development and dissemination of QCA.

Carsten has published articles in several peer-reviewed journals, and three books, among them Set-Theoretic Methods for the Social Sciences (Cambridge University Press, 2012) co-authored with Claudius Wagemann.

IOANA-ELENA OANA

nena.oana@yahoo.com
Institution: Central European University

Instructor Bio

Ioana Elena (Nena) Oana is a final stage PhD Researcher in Comparative Politics at CEU, where she is working on policy responsiveness to collective mobilisation.

She is the main developer of the R package SetMethods used for Set-Theoretic Multi-Method Research and Advanced QCA. Nena has extensive experience in teaching applied QCA using R, having assisted on the ECPR Summer and Winter School QCA courses for the past five years.

Besides research methodology, Nena’s main research interests also include political participation and representation, political behaviour, and political psychology.

Software & Hardware Requirements

- R, R packages QCA, QCAGUI, SetMethods, and all their dependencies
- RStudio
- You can bring your own laptop – Mac and PC are ok.
Indicative Reading List

More precise indications will be provided in due time.
(* Key sources for the whole course

Session 1

Session 2 -3

Session 4

Session 5

Session 6

(*) Schneider, Carsten Q., and Ingo Rohlfing. 2013. ‘Set-Theoretic Methods and Process Tracing in Multi-Method Research: Principles of Case Selection after QCA.’ Sociological Methods and Research, 42(4), 559-597

Optional

Thomann, E. **Qualitative Comparative Analysis (QCA) as a tool for street-level bureaucracy research** In: Research Handbook on Street-Level Bureaucracy: The Ground Floor of Government in Context. Edward Elgar, Public Policy Series (Editor Peter Hupe)